Construction of a full transcription map of human papillomavirus type 18 during productive viral infection.
نویسندگان
چکیده
Human papillomavirus type 18 (HPV18) is the second most common oncogenic HPV genotype, responsible for ∼15% of cervical cancers worldwide. In this study, we constructed a full HPV18 transcription map using HPV18-infected raft tissues derived from primary human vaginal or foreskin keratinocytes. By using 5' rapid amplification of cDNA ends (RACE), we mapped two HPV18 transcription start sites (TSS) for early transcripts at nucleotide (nt) 55 and nt 102 and the HPV18 late TSS frequently at nt 811, 765, or 829 within the E7 open reading frame (ORF) of the virus genome. HPV18 polyadenylation cleavage sites for early and late transcripts were mapped to nt 4270 and mainly to nt 7299 or 7307, respectively, by using 3' RACE. Although all early transcripts were cleaved exclusively at a single cleavage site, HPV18 late transcripts displayed the heterogeneity of 3' ends, with multiple minor cleavage sites for late RNA polyadenylation. HPV18 splice sites/splice junctions for both early and late transcripts were identified by 5' RACE and primer walking techniques. Five 5' splice sites (donor sites) and six 3' splice sites (acceptor sites) that are highly conserved in other papillomaviruses were identified in the HPV18 genome. HPV18 L1 mRNA translates a L1 protein of 507 amino acids (aa), smaller than the 568 aa residues previously predicted. Collectively, a full HPV18 transcription map constructed from this report will lead us to further understand HPV18 gene expression and virus oncogenesis.
منابع مشابه
The Transcription Map of Human Papillomavirus Type 18 during Genome Replication in U2OS Cells
The human osteosarcoma cell line U2OS is useful for studying genome replication of human papillomavirus (HPVs) subtypes that belong to different phylogenetic genera. In this study, we defined the HPV18 transcription map in U2OS cells during transient replication, stable maintenance and vegetative amplification by identifying viral promoter regions, transcription polyadenylation and splicing sit...
متن کاملMutations in HPV18 E1^E4 Impact Virus Capsid Assembly, Infectivity Competence, and Maturation
The most highly expressed protein during the productive phase of the human papillomavirus (HPV) life cycle is E1^E4. Its full role during infection remains to be established. HPV E1^E4 is expressed during both the early and late stages of the virus life cycle and contributes to viral genome amplification. In an attempt to further outline the functions of E1^E4, and determine whether it plays a ...
متن کاملSp100 Provides Intrinsic Immunity against Human Papillomavirus Infection
UNLABELLED Most DNA viruses associate with, and reorganize, nuclear domain 10 (ND10) bodies upon entry into the host nucleus. In this study, we examine the roles of the ND10 components PML, Sp100, and Daxx in the establishment of human papillomavirus type 18 (HPV18) infection of primary human keratinocytes. HPV18 DNA or HPV18 quasivirus was introduced into primary human keratinocytes depleted o...
متن کاملBrd4 Activates Early Viral Transcription upon Human Papillomavirus 18 Infection of Primary Keratinocytes
Human papillomaviruses (HPVs) replicate in the cutaneous and mucosal epithelia, and the infectious cycle is synchronous with the differentiation program of the host keratinocytes. The virus initially infects dividing cells in the lower layers of the epithelium, where it establishes a persistent infection. The viral genome is maintained as a low-copy-number, extrachromosomal element in these pro...
متن کاملSp100 colocalizes with HPV replication foci and restricts the productive stage of the infectious cycle
We have shown previously that Sp100 (a component of the ND10 nuclear body) represses transcription, replication and establishment of incoming human papillomavirus (HPV) DNA in the early stages of infection. In this follow up study, we show that Sp100 does not substantially regulate viral infection in the maintenance phase, however at late stages of infection Sp100 interacts with amplifying vira...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 85 16 شماره
صفحات -
تاریخ انتشار 2011